Производство стали и чугуна: процесс получения и используемые материалы

Восстановление и науглероживание железа в печи

Все домны работают по принципу противотока. При этом в них поочередно происходят следующие химические процессы:

  1. Восстановление железа. Происходит этот процесс последовательно и выглядит так: Fe2O3 — Fe3O4 — FeO — Fe. В качестве восстановителя в данном случае выступает оксид углерода (CO), образующийся при взаимодействии CO2 с раскаленным коксом, а также твердый углерод последнего.
  2. Науглероживание железа. Реакция в данном случае выглядит так: 3Fe + 2CO = Fe3C + CO2 + Q. Карбид Fe3C легко смешивается с твердым железом, в результате чего и образуется сплав последнего с углеродом. Стекая вниз, он омывает куски кокса и науглероживается еще больше. Помимо этого, в нем растворяются такие вещества, как марганец, сера, кремний и т. д.

Таким образом, становится понятно, доменный металл — это сплав железа с каким веществом. Получить чугун можно просто путем науглероживания расплава шихты.

Внешние ссылки [ править ]

vтеПроизводство чугуна и стали
  • История черной металлургии
  • Список производителей стали
Производство чугуна ( металлургический завод )
Плавка
  • Bloomery (производит губчатое железо )
  • Доменная печь (производит чугун )
    • Холодный взрыв
    • Горячий взрыв
    • Антрацитовое железо
  • Железо прямого восстановления
Вторичный
  • Кованое железо (через Finery горне или отражательную пудлинговую печь )
  • Чугун (через вагранку или индукционную печь )
Производство стали ( сталелитейный завод )
Первичная (до 1850 г.)
  • Сварка образцов
  • Тигельная сталь ( дамасская сталь )
  • Татара печь
  • Процесс цементирования
Первичная (после 1850 г.)
  • Бессемеровский процесс
  • Мартеновская печь
  • Электродуговая печь
  • Основной кислородный процесс
Вторичный
  • Электрошлаковый переплав
  • Вакуумно-дуговый переплав
  • Обезуглероживание кислородом аргона
Методы термообработки
Отжиг
  • Низкое содержание водорода
  • Короткое замыкание
Закалка / цементация
  • Аусформинг
  • Boriding
  • Карбонитрирование
  • Науглероживание
  • Криогенный
  • Ферритная нитроцементация
  • Индукция
  • Азотирование
  • Осадки
  • Закалка лак закалка
Темперирование
  • Аустемперирование
  • Martempering
  • Криогенная обработка ( Удаление заусенцев
  • Дефлешинг
  • Закалка )
  • Дифференциальная термообработка
  • Обезуглероживание
  • Формовочный газ
  • Термическая обработка после сварки
  • Закалка
  • Сверхпластическая формовка
Производство по странам
  • Бангладеш
  • Китай
  • Индия
  • Италия
  • Люксембург
  • Соединенные Штаты

Восстановление других элементов

Mn, кремний, сера и фосфор попадают в доменную печь вместе с шихтой в виде различных химических соединений. Высшие оксиды марганца восстанавливаются до MnO примерно по тому же принципу, что и железо: MnO2 — Mn2O3 — Mn3O4 — MnO. Чистый марганец выделяется так: MnO + C = Mn + CO — Q. Кремний попадает в печь в виде кремнезема SiO2. Восстановление его происходит по реакции SiO2 + 2C = Si + 2CO — Q.

Фосфор восстанавливается водородом, твердым углеродом и CO и, к сожалению, переходит в чугун практически полностью. Этот элемент ухудшает доменный сплав железа. Позволяет получить чугун хорошего качества присутствующий в шихте кремнезем, а также высшие оксиды марганца. Mn в некоторых случаях добавляется в домну специально. При этом получается особый вид чугуна — марганцевый.

Области применения

  • Его используют для производства деталей в машиностроении. В основном из чугуна делают блоки для двигателей и коленчатые валы. Для последних требуется усовершенственный чугун, в который добавляют специальные добавки из графита. Благодаря устойчивости чугуна к трению из него делают тормозные колодки отличного качества.
  • Чугун может бесперебойно работать даже при сильно низких температурах. Поэтому его часто используют в производстве деталей машин, которым придется работать в жестких климатических условиях.
  • Хорошо зарекомендовал себя чугун в металлургической области. Его ценят за относительно небольшую цену и отличные литейные свойства. Изготовленные из чугуна изделия характеризуются отличной прочностью и износостойкостью.
  • Из чугуна делают большое множество сантехнических изделий. К ним можно отнести раковины, батареи, мойки и различные трубы. Особо славятся чугунные ванны и радиаторы отопления. Некоторые из них служат в квартирах по настоящее время, хотя приобретены были много лет назад. Чугунные изделия сохраняют свой первоначальный вид и не нуждаются в реставрации.
  • Благодаря хорошим литейным свойствам из чугуна получают настоящие произведения искусства. Его часто применяют в изготовлении художественных изделий. Например, таких как красивые ажурные ворота или памятники архитектуры.

Выбираете ванну? Не знаете, что лучше, чугунная или стальная? Тогда это видео поможет вам:

Продукция черной металлургии широко используется во многих отраслях народного хозяйства, а черный металл всегда востребован в строительстве и машиностроении. Металлургия уже давно успешно развивается, благодаря своему высокому техническому потенциалу. Наиболее часто применяются в производстве и в быту чугунные и стальные изделия.

Чугун и сталь оба относятся к группе черных металлов, эти материалы представляют собой уникальные по своим свойствам сплавы железа с углеродом. В чем отличия стали и чугуна, их главные свойства и характеристики?

Выплавка чугуна и стали

Современное металлургическое производство чугуна и стали состоит из сложного комплекса различных производств (рис. 22):

  1. Шахт и карьеров по добыче руд, каменных углей, флюсов, огнеупорных материалов.
  2. Горно-обогатительных комбинатов, на которых подготовляют руды к плавке, обогащают их, удаляя часть пустой породы, и получают концентрат – продукт с повышенным содержанием железа по сравнению с рудой.
  3. Коксохимических цехов и заводов, на которых осуществляют подготовку коксующихся углей, их коксование (сухую перегонку при температуре

1000°С без доступа воздуха) в коксовых печах и попутное извлечение из них ценных химических продуктов: бензола, фенола, каменноугольной смолы и др.

Энергетических цехов для получения и трансформации электроэнергии, сжатого воздуха, необходимого для дутья при доменных процессах, кислорода для выплавки чугуна и стали, а также очистки газов металлургических производств с целью охраны природы и сохранения чистоты воздушного бассейна.
Доменных цехов для выплавки чугуна и ферросплавов.
Заводов для производства различных ферросплавов.
Сталеплавильных цехов – конвертерных, мартеновских, электросталеплавильных для производства стали.
Прокатных цехов, в которых нагретые слитки из стали перерабатываются в заготовки (блюмы и слябы) и далее в сортовой прокат, трубы, лист, проволоку и т. п.

Современное производство стали основано на двухступенчатой схеме, которая состоит из доменной выплавки чугуна и различных способов последующего его передела в сталь. В процессе доменной плавки, осуществляемом в доменных печах, происходит избирательное восстановление железа из его окислов, содержащихся в руде. Одновременно с этим из руды восстанавливаются также фосфор и в небольших количествах марганец и кремний; происходит науглероживание железа и частичное насыщение его серой топлива (кокса). Таким образом из руды получают чугун – сплав железа с углеродом более 2,14%, кремнием, марганцем, серой и фосфором.

Передел чугуна в сталь осуществляют в металлургических агрегатах: в конвертерах, мартеновских и электрических печах. В них из-за ряда происходящих химических реакций осуществляется избирательное окисление примесей чугуна и перевод их в процессе плавки в шлак и газы. В результате получают сталь заданного химического состава.

Рис. 22. Схема современного металлургического производства

Руда

Основные виды сырья для производства чугуна – железные руды, кремнезем, глинозем, пустые породы с содержанием оксидов кальция и магния.

Руда, кроме основного материала, содержит и дополнительные компоненты – ценные и редкоземельные металлы. Если их содержание невелико, они используются в производстве чугуна. Если же процентное содержание позволяет извлекать из них, например, молибден, ванадий или никель, такую руду разделяют на компоненты.

Породу, добытую из недр, переводят из сырой в товарную. Происходит это в несколько этапов:

  1. Дробление для раскрытия рудного минерала.
  2. Грохочение для калибрования кусков разного размера.
  3. Окускование с целью получения крупных кусков руды из мелких.
  4. Агломерация (спекание).
  5. Обогащение для отделения пустой породы.
  6. Обжиг – для удаления серы, воды и углекислоты.
  7. Усреднение состава для достижения однородности.

После всех подготовительных процедур руду направляют на переплавку. Это делают в доменных печах на металлургических комбинатах.

Разновидности

В промышленном применении наиболее ценными являются руды:

  • магнитный железняк, в котором содержание Fe колеблется от 45 до 70% и почти отсутствуют вредные примеси;
  • красный железняк (55-60% Fe);
  • бурый железняк (35-50%), основной недостаток – значительное количество вредных примесей;
  • шпатовый железняк (30-45%).

Основные месторождения этих руд в нашей стране сосредоточены на Урале, в Сибири и ЦФО.

Свойства

Характеристики руды определяет ее химический состав. Чем выше содержание основного компонента, тем она ценнее.

Тип железной руды Содержание Fe, %
бедная < 45
средняя От 45
богатая 60-65
очень богатая > 65

Наличие вредных примесей и количество пустой породы делает производство металла из руд низкого качества более дорогостоящим. Чем выше содержание железа и меньше дополнительных компонентов, тем выше качество чугуна и дешевле его производство.

Стоимость железной руды на бирже находится на уровне 85 долларов за 1 тонну (на 18.02.2020).

Когда появилось железо?

В Китае железо было известно уже в 2357 году до н.э., а в Египте — в 2800 году до н.э., хотя в Египте еще в 1600 г. до н.э. на железо смотрели как на диковину. В эти времена оно еще не получило широкого распространения. Железный век в Европе начался приблизительно за 1000 лет до н.э., когда на берега Средиземного моря проникло искусство получения железа.

Правда, следует отметить, что с чистым железом люди познакомились еще в эпоху энеолита, однако никакого практического значения этот факт тогда не имел. Дело в том, что в чистом виде железо в природе встречается в метеоритах. Эти падающие с неба куски металла стали предметом культа у некоторых народов: они встречаются при раскопках ряда стоянок.

Высокое качество литейного сыродутного чугуна

Технология чугунного литья была освоена китайцами значительно раньше, чем любым другим народом мира. В дальнейшем чугун в Китае широко использовался в архитектуре. Уже в 1-м тысячелетии изготовлялись необычайно крупные отливки из чугуна. Самым величественным сооружением из чугуна признается восьмигранная колонна под названием «Небесная ось, знаменующая добродетель Великой династии Чжоу с ее сонмом земель».

Она была воздвигнута по приказу императрицы У Цзэтянь в 695 г. на чугунном фундаменте, длина окружности которого составляет 51 м, а высота – 6 м. Сама колонна имеет 3,6 м в диметре и 32 м в высоту. На ее вершине устроен «облачный свод» (высота 3 м, длина окружности 9 м), который, в свою очередь, венчают четыре бронзовых дракона, каждый высотой 3,6 м, поддерживающих позолоченную жемчужину. На сооружение этой конструкции было израсходовано 1325 т металла. Наиболее известной пагодой является знаменитая «Железная пагода» в Даньяне (провинция Хубэй). Она построена в 1061 г., и ее высота составляет 13 м.


Чугунная пагода (Лонин, провинция Шантун, 1105 г.)

Шицзы Ван, также известный под названием «Великий лев Цзан-чжоу», – самое крупное в мире цельнолитое сооружение из чугуна. Его воздвигли по приказу императора Шицзуна (династия Чжоу) в честь его похода на монголов в 954 г. Высота этого уникального монумента – 5,4 м, длина – 5,3 м, ширина – 3 м. Толщина стенок пустотелой статуи составляет от 4 до 20 см, масса – более 50 т.

В 1984 г. возле чугунного льва были проведены археологические работы, что позволило обнаружить куски литейной формы и шлака и восстановить детали древней технологии. Китайские ученые установили, что литейная форма была изготовлена по глиняной рубашке, для отделения которой от стержня и кожуха была применена прослойка из грубой ткани (ее следы были обнаружены при раскопках). Исследователи полагают, что первоначально «Великий лев» стоял в буддистском храме и служил пьедесталом для бронзовой статуи Будды, сидевшего на цветке лотоса. Эта статуя, скорее всего, была уничтожена уже при преемнике императора Шицзуна, когда в стране началась кампания против буддизма. В 1803 г. Шицзы Ван серьезно пострадал во время сильной бури. В 1984 г. лев был отреставрирован и водружен на двухметровый железобетонный пьедестал.

«Царь-Лев» является уникальным объектом по способу получения большой массы расплава и способу заливки большой формы, представлявшей сложнейшую инженерную проблему. Для производства металла использовали ваграночную плавку чугуна, которая проводилась одновременно во множестве специально построенных агрегатов. Из них расплав стекал в единую литниковую систему, следы которой сохранились на спине статуи.


Транспортирование чугуна по каналам при производстве крупногабаритных отливок

Не меньшее восхищение искусством средневековых металлургов вызывает отлитый в X в. чугунный колокол диаметром 3 м и высотой 4 м. Его масса составляет более 60 т. Подобные многотонные чугунные колокола изготовлялись в Китае и в дальнейшем. Они являются исключительно восточной традицией в технике колокольного литья, поскольку в странах Европы для литья колоколов применялась только бронза.

Редким исключением из мировой практики является участие в денежном обращении Китая чугунных монет. Они широко использовались в империи в X–XIII вв. В это время в Китае существовал большой дефицит меди, поэтому вывоз из страны этого металла и его сплавов был запрещен. В некоторых регионах страны в целях экономии меди имели хождение только чугунные монеты. Все китайские монеты, начиная с древних, отливались с отверстиями для ношения их на специальных шнурах. В связке, как правило, было 400 или 1000 монет, причем счет деньгам в крупных торговых сделках вели именно связками. Постепенно общераспространенной стала круглая форма монет с квадратным отверстием, которая просуществовала в Китае до начала XX в. Выпуск миллиардных количеств монет и высокие требования к их качеству, наряду с необходимостью сохранения уровня затрат на производство ниже номинальной стоимости монеты, способствовали быстрому совершенствованию литейных технологий.

Высокие литейные свойства китайских чугунов, позволявшие получать подобные изделия, объясняются как удачной конструкцией печей для их получения, так и использованием железной руды, богатой фосфором. Помимо природных руд китайские мастера также использовали содержащие фосфор вещества («черную землю»), что значительно снижало температуру плавления чугуна и улучшало его литейные свойства.

Как выглядит метод прямого восстановления железа сегодня?

Стоит отметить, что по своему существу метод прямого восстановления железа мало в чем изменился по сравнению с древними временами. Для получения чистого железа все так же используют железную руду, которую в процессе получения металла разогревают. Правда сегодня, руда изначально подвергается дополнительной обработке — то есть, обогащению, превращаясь, таким образом, в своеобразный концентрат.

Сегодня применяются два основных способа получения чистого железа из концентрата:

  1. Первый способ основан на том, что концентрат железной руды разогревают в печи при применении твердого топлива (точно также, как и в древние времена) или газа, представляющего собой сочетание угарного газа (СО) и водорода. В результате разогрева руды получают окатыши, из которых впоследствии и производят чистое железо.
  1. Второй способ восстановления железа по своей технологии похож на первый — отличие состоит в том, что в нем применяется чистый водород. Этот способ позволяет получать железо быстрее, и при этом сам металл будет отличаться более высоким качеством — ведь в результате взаимодействия обогащенной руды с водородом будет получаться только два вещества — чистое железо и вода. Казалось бы, этот метод должен пользоваться большей популярностью, однако, сегодня он применяется не очень часто — только в том случае если речь идет о получении железного порошка. Дело в том, что сам процесс получения чистого водорода, который необходим для применения этого метода восстановления железа, связан с определенными сложностями, как технического, так и экономического характера. Да и хранение чистого водорода — тоже задача, не лишенная своих сложностей.

Не так давно ученые разработали и еще один способ получения восстановленного железа — напрямую из концентрата железной руды, минуя стадию превращения ее в окатыши. Проведенные в этом направлении исследования показали, что этот способ гарантирует более высокую скорость получения чистого железа. Но в промышленных масштабах этот способ пока не применяется, так как он требует больших технологических изменений, также, как и смены оснащения промышленных предприятий.

Продукты прямого восстановления

Губчатое железо

Губчатым железом называют продукт, который получают в результате восстановления железорудного материала без его плавления при температуре менее 1000—1200° С. В зависимости от вида исходного сырья губчатое железо представляет собой пористые куски восстановленной руды (редко агломерата) или окатыши, а в некоторых случаях — металлический порошок. Поскольку при восстановлении объемные изменения материала сравнительно невелики, плотность губчатого железа меньше плотности сырья, а пористость велика. Обычно кажущаяся плотность кускового губчатого железа 2—4 г/см3, а пористость 50—80 %.

В некоторых процессах восстановления мелкой руды, окалины или концентрата в неподвижном слое (например, в процессе Хоганес) происходит одновременное спекание исходного порошкового материала. Плотность образующегося брикета до некоторой степени зависит от температуры восстановления. Вследствие малой плотности губчатого железа насыпная масса его получается меньшей по сравнению с ломом, что приводит иногда к необходимости брикетирования (прессования) перед плавкой. Брикетирование проводят на прессах различного типа при удельных давлениях 1—3 тс/см2; при этом получают плотность брикетов до 5 г/см3.

Сильно развитая поверхность и высокая сообщающаяся пористость губчатого железа вызывают его повышенную окисляемость при хранении и транспортировке в неблагоприятных атмосферных условиях, хотя имеющиеся по этому вопросу данные противоречивы. Брикетирование уменьшает окисляемость.

Химический состав губчатого железа определяется в основном составом сырья. По сравнению с ломом оно значительно чище по содержанию примесей цветных металлов. Содержание пустой породы в нём выше, чем в исходной руде, пропорционально степени восстановления. Обычно сырьем служат богатые руды или концентраты, поэтому губчатое железо не подвергают дополнительной очистке и оно содержит все примеси пустой породы сырья. При получении губчатого железа из бедного сырья его подвергают обогащению магнитной сепарацией.

Губчатое железо используют для плавки стали (главным образом в электропечах), цементации меди (осаждения её из сернокислых растворов) и получения железного порошка.

Металлизованная шихта

Металлизованной шихтой называют частично восстановленное железорудное сырье, применяемое в доменной печи и в кислородных конвертерах для охлаждения плавки (взамен руды и лома). Степень восстановления металлизованной шихты обычно не превышает 80 %, в то время как для губчатого железа она чаще всего не бывает ниже 90 %.

Кричное железо

Кричное железо, производимое сейчас, отличается от той крицы, которую несколько веков назад получали в кричных горнах в виде больших кусков и проковывали непосредственно в изделия. Кричное железо в настоящее время производят в трубчатых вращающихся печах из бедных железных и железо-никелевых руд восстановлением их при 1100—1200 °С. Оно представляет собой довольно мелкие (крупностью 1—15 мм) металлические частицы с механическими примесями и включениями шлака. Количество шлаковых примесей в зависимости от схемы измельчения и магнитной сепарации промежуточного продукта составляет 10—25 %. При переработке хромо-никелевых руд получаемая крица содержит никель. Обычно крица имеет также высокое содержание фосфора и серы. Как правило, крицу используют в доменных печах, а в некоторых странах — в электропечах для выплавки стали или ферроникеля.

Чугун или углеродистый полупродукт

Чугун или углеродистый полупродукт получают во вращающихся печах или в электропечах, прямо связанных с печью восстановления, где восстановителем является твердое топливо. Чугун, полученный внедоменными методами, не отличается от обычного доменного; в ряде случаев получают полупродукт с меньшим содержанием некоторых примесей, чем в чугуне. Передел чугуна и полупродукта на сталь производится в известных сталеплавильных агрегатах без затруднений, а в случае полупродукта — с несколько меньшими затратами, чем передел доменного чугуна.

Производство цветных металлов

Производство меди.

Медь получают главным образом пирометаллургическим способом. Пирометаллургия – это совокупность металлургических процессов, протекающих при высоких температурах. Производство меди из медных руд включает в себя их обогащение, обжиг, плавку на полупродукт – штейн, выплавку из штейна черновой меди (конвертирование) и её очистку от примесей (рафинирование).

Для производства меди применяют медные руды, содержащие 1 – 6% Сu, а также отходы меди и её сплавы.

Черновая медь содержит 98,4 – 99,4% Сu и небольшое количество примесей. Эту медь разливают в изложницы. Черновую медь рафинируют для удаления вредных примесей и газов.

После огневого рафинирования получают медь чистотой 99 – 99,5% (рис. 21.). Из неё отливают чушки для выплавки сплавов меди (бронзы и латуни) или плиты для электролитического рафинирования. Электролитическое рафинирования ведут для получения чистой меди от примесей (более 99,5%Cu).

Рис. 21. Производство рафинированной меди

Производство алюминия.

Основным способом производства алюминия в настоящее время является электролитический. Электролиз – это совокупность процессов электрохимического окисления – восстановления, происходящих на погруженных в электролит электродов при прохождении электрического тока.

Основное сырьё для производства алюминия – алюминиевые руды: бокситы, нефелины, алуниты, каолины.

Производство алюминия включает в себя:

      • получение безводного, свободного от примесей оксида алюминия (Al2O3 глинозёма). Глинозём получают из бокситов путём их обработки щёлочью;
      • получение криолита из плавикового шпата 2H3AlF6;
      • электролиз глинозёма в расплавленном криолите;

В процессе электролиза алюминий собирается на дне ванны под слоем электролита. Его периодически извлекают, используя специальное устройство. Для нормальной работы ванны на её дне оставляют немного алюминия рис. 22.

Алюминий, полученный электролизом, называют алюминием-сырцом. В нём содержатся металлические и неметаллические примеси, газы. Примеси удаляют рафинированием, для чего продувают хлор через расплав алюминия. Затем жидкий алюминий выдерживают в ковше или в электропечи в течение 30 – 45 мин при температуре 690 – 730оС для всплывания неметаллических включений и выделения газов из металла. После рафинирования чистота первичного алюминия составляет 99,5 – 99,85%. На рис. 23. фотография Уральского алюминиевого завода.

Рис. 22. Производство алюминия

Рис. 23. Уральский алюминиевый завод

Производство магния.

Для производства магния наибольшее распространение получил электролитический способ (рис. 24).

Рис. 24. Схема производства магния

Основным сырьём для получения магния является карналлит, магнезит, доломит, бишофит.

Производство магния включает в себя:

  • получение чистых безводных солей магния (хлористого магния MgCl2);
  • электролиз этих солей в расплавленном состоянии, получение чернового магния в котором содержится 5% примесей;
  • рафинирование чернового магния, т.е. переплавляют его с флюсами при температуре 700…750оС и перемешивают. Неметаллические примеси переходят в шлак. Затем печь охлаждают до температуры 670оС, и магний разливают в изложницы на чушки.

Производство титана.

Титан получают магниетермическим способом. Производство титана включает в себя:

  • обогащение титановых руд;
  • выплавку из них титанового шлака с последующим получением из него четырёххлористого титана;
  • восстановление из последнего металлического титана магнием.

Сырьём для получения титана являются титаномагнетитовые руды, из которых выделяют ильменитовый концентрат (TiO2, FeO, Fe2O3 и пустая порода). Название этот концентрат получил по наличию в нём минерала ильменита FeO… TiO2.

Ильменитовый концентрат плавят в смеси с древесным углём, антрацитом, где оксиды железа и титана восстанавливаются. Полученный титановый шлак подвергают хлорированию в специальных печах. Далее полученный четырёххлористый титан смешивают с чушковым магнием в реакторах (рис. 25) при температуре 950 – 1000оС и происходит его восстановление. Получается пористая масса – губка.

Титановую губку плавят методом ВДП. Вакуум в печи предохраняет титан от окисления и способствует очистке его от примесей. Полученные слитки титана имеют дефекты, поэтому их вторично переплавляют, используя как расходуемые электроды. В результате этого чистота титана составляет 99,6 – 99,7%. После вторичного переплава слитки (рис. 26) используют для обработки давлением. На рис. 27 показано изделие полученное из титана.

Рис. 25. Реакторы для восстановления четырёххлористого титана

Рис. 26. Титановые слитки

Рис. 27 Изделие из титана

Просмотров:
5 285

Кислородно-конвертерный способ получения стали

Производство стали сегодня осуществляется в основном этим способом. На долю кислородно-конверторного производства совсем недавно приходилось до 60% мирового производства стали.

Однако, этот процент снижается в связи с появлением электродуговых печей (ЭДП). Продувка печей осуществляется чистым кислородом (99,5%) под высоким давлением.

Продукт кислородно-конвертерной печи представляет сталь с заданными химическими свойствами. Она поступает в машину непрерывного литья заготовок (МНЛЗ), где материал застывает в форме блюма или плиты. Для получения определенных жестких параметров металл подвергается вторичной переработке.

Трудности промышленности

На сегодняшний день литье чугуна имеет сомнительные перспективы. Дело в том, что из-за высокого уровня затрат и большого количества отходов промышленники все чаще отказываются от чугуна в пользу дешевых заменителей. Благодаря быстрому развитию науки уже давно стало возможным получение более качественных материалов при меньших затратах. Серьезную роль в этом вопросе играет защита окружающей среды, которая не приемлет использование доменных печей. Чтобы полностью перевести выплавку чугуна на электрические печи, нужны годы, если не десятилетия. Почему так долго? Потому что это очень дорого, и далеко не каждое государство может себе это позволить. Поэтому остается лишь ждать, пока наладится массовый выпуск новых сплавов. Конечно же, полностью прекратить промышленное применение чугуна в ближайшее время не получится. Но очевидно, что масштабы его производства будут падать с каждым годом. Эта тенденция началась еще 5-7 лет тому назад.

История [ править ]

Производство губчатого железа с последующей его обработкой было самым ранним методом получения железа на Ближнем Востоке , в Египте и Европе , где оно использовалось, по крайней мере, до 16 века. Есть некоторые свидетельства того, что метод блюмера также использовался в Китае , но в Китае были разработаны доменные печи для получения чугуна к 500 г. до н . Э.

Преимущество блюмерного метода заключается в том, что железо можно получить при более низкой температуре печи, всего около 1100 ° C или около того. Недостаток по сравнению с доменной печью состоит в том, что за один раз можно производить только небольшие количества.

Переработка чугуна в железо и сталь

В настоящее время применяются два главных способа переработки чугуна в железо и сталь. Оба они основаны на окислении содержащихся в чугуне примесей.

Бессемеровский способ заключается в продувании сквозь расплавленный чугун сильной струи воздуха.

Бессемерование производится в огромных грушевидных железных сосудах, так называемых конверторах (рис. 155), выложенных изнутри кирпичом из кремнезема и вмещающих до 40—50 т чугуна. Конвертор может вращаться на горизонтальных цапфах при помощи зубчатого колеса. Ко дну конвертора, в котором находится много мелких отверстий, приделана воздушная камера для нагнетания воздуха. Конвертор наполняют расплавленным чугуном, а в воздушную камеру нагнетают воздух. Проходя через отверстия в дне конвертора, воздух пронизывает всю массу чугуна и окисляет примеси. Прежде всего выгорают, переходя в шлак, кремний и марганец, затем уже и углерод. Весь процесс бессемерования продолжается 10—20 мин., после чего конвертор можно опорожнить, повернув его отверстием вниз.

Бессемеровским способом получается железо, содержащее менее 0,3% углерода. Если желают получить сталь, то или заканчивают продувание воздуха раньше, пока еще не весь углерод чугуна. Получение малоуглеродистых сталей связано с еще большими потерями железа. Кроме того, вследствие сильного продувания воздуха в железо попадает часть шлаков, которые остаются в нем при остывании и понижают качество получаемого металла.

Более совершенным является мартеновский способ, при котором переработка чугуна производится в регенеративных печах.

В печи сплавляют чугун вместе с железным ломом и некоторым количеством руды. Выгорание примесей происходит отчасти за счет кислорода воздуха, поступающего в печь вместе с горючими газами, отчасти за счет кислорода прибавленной

В регенеративных печах можно применять как кислую обкладку печи из кремнезема, так и основную из извести. Добавляя к чугуну железный лом и руду в той или иной пропорции, можно получать сталь с любым содержанием углерода, обладающую более высокими качествами, чем бессемеровская.

Производительность мартеновских печей характеризуется количеством стали, получаемой за сутки с 1 м 2

пода печи. Раньше считалось, что четыре тонны с метра в сутки — это высший предел, до которого может быть доведена производительность печи. Однако опыт передовых рабочих и инженеров наших заводов показал, что мартеновские печи могут работать гораздо более производительно. В настоящее время суточный съем стали с 1 м 2 пода печи составляет в среднем 7,2 т.

В последнее время для выплавки стали широко используются электрические печи. Источником тепла в этих печах служит электрическая энергия, вследствие чего процесс выплавки значительно упрощается и создаются благоприятные условия для регулирования режима плавки. Наиболее распространены печи, в которых нагревание производится при помощи электрической дуги, причем легко достигается температура в 2000° и выше. Самый процесс выплавки стали в электрической печи почти не отличается от мартеновского процесса, но благодаря возможности точно регулировать температуру печи, а следовательно, и течение процесса сталь получается более высокого качества. Таким путем получают инструментальную сталь и различные специальные сорта стали.

При получении особо важных сортов стали для ответственных деталей и инструментов прибегают к так называемой тигельной плавке. Смесь различных сортов стали и специальных добавок загружают в тигли, которые накрывают крышками и затем устанавливают на под пламенной печи типа мартеновской, где происходит плавление смеси и получается сталь определенного сорта.

В настоящее время научная и техническая мысль работает также над разрешением проблемы получения железа методом прямого восстановления из руд при умеренных температурах. Для получения железа по этому методу измельченную железную руду восстанавливают углем или газами при 800—1000°, а затем, после отделения на магнитном сепараторе части пустой породы и золы восстановителя, перерабатывают полученное рыхлое железо в мартеновских или электрических печах на сталь. Для восстановления может быть применено любое твердое или газообразное топливо. Сталь, выплавленная из восстановленного железа, отличается высокими механическими качествами. Однако существующие установки по прямому получению железа из руд пока еще очень несовершенны и громоздки, что ограничивает применение этого метода.

Вы читаете, статья на тему Переработка чугуна в железо и сталь

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Корреспондент-строитель
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: