Новости
Никель — довольно распространённый элемент на Земле, его среднее содержание в земной коре составляет около 140 г/т, где он встречается только в виде соединений. Но в железных метеоритах присутствует в виде самородного металла с содержанием от 5 до 50 %. В таблице Менделеева занимает клетку №28. Как простое вещество — это ковкий, малоактивный металл серебристо-белого цвета, обозначается символом Ni
(лат. Niccolum ).
Простое вещество Никель (Ni) – пластичный, ковкий металл серебристо-белого цвета. Никелевая руда в 17 веке получила своё название от имени духа гор немецкой мифологии, который «подбрасывал» искателям медных руд минерал красного цвета, очень похожий на медь и ныне известный как минерал никелин (арсенид никеля с формулой NiAs). В то время он получил название купферникель (kupfernickel), что переводится как «медный озорник». Эту руду в 1751 г. исследовал шведский минералог Аксель Кронстедт. Ему удалось выделить новый металл в чистом виде, который он назвал nickel (никель).
Никелин ( NiAs), кристалл 2х2 см. Месторождение Cobalt, Канада
Никель является важной составляющей вещества железных метеоритов, представляющих собой сплавы железа, никеля и кобальта. Но присутствие никеля в их составе в значительной степени определяет свойства этой группы метеоритов. Железо и никель в железных метеоритах образуют две минеральные фазы: камасит и тэнит
Камасит содержит 5-7% никеля, формируя широкие полосы т.н. видманштеттеновых фигур (лучеподобных структур), которые отчётливо видны на спилах образцов, протравленных 5% раствором азотной кислоты и спирта
Железо и никель в железных метеоритах образуют две минеральные фазы: камасит и тэнит. Камасит содержит 5-7% никеля, формируя широкие полосы т.н. видманштеттеновых фигур (лучеподобных структур), которые отчётливо видны на спилах образцов, протравленных 5% раствором азотной кислоты и спирта.
Спил железного метеорита Nantan (Китай, 1958 г.) с характерными видманштеттеновыми структурами, размер 24х10 см. Метеоритная коллекция Московского Планетария, № 34.
Тэнит содержит 7-50% никеля, и ширина полос тем меньше, чем больше содержание тэнита или никеля. Поэтому по содержанию никеля железные метеориты делят на три основных класса: гексаэдриты 5- 7% Ni; октаэдриты 7-15% Ni; атакситы более 15 % Ni . Если содержание никеля в метеорите более 15%, видманштеттеновы структуры отсутствуют. Поэтому спилы атакситов имеют гладкую зеркальную поверхность без узоров. Попытки создать видманштеттеновы фигуры в лабораторных условиях успеха не имели.
Спил железного метеорита Чинге (Тува, Россия, 1913 г.) Атаксит, размер 8,5х2,5 см. Метеоритная коллекция Московского Планетария, № 37.
Основные месторождения никеля находятся в Канаде, России, Кубе, ЮАР, Албании, Греции, Украине. В 2020 году 67 % потребления никеля пришлось на производство нержавеющей стали, 17 % на сплавы без железа, 7 % на никелирование и 9 % на другие применения (аккумуляторы, порошковая металлургия, химические реактивы), а цены на этот металл варьировали в пределах от $15 000 до $17 000 за тонну.
Никель
Никелирование — процесс нанесения никеля на поверхность изделия электролитическим или химическим способом. Никелированную поверхность смесителя легко узнать. В отличие от хрома, данное покрытие матовое. На этом тусклом металле почти не видно отпечатков пальцев или брызг воды.
Электролитический и химический методы имеют ряд отличий. Первый способ обработки продукции более дешевый, поверхность обработанных изделий часто получается более пористой. Для повышения антикоррозийных свойств на поверхности изделия должны полностью отсутствовать поры. Это достигается несколькими способами. Либо проводится меднение поверхности смесителя, а затем никелирование, либо никель наносится в несколько слоёв. Финишным слоем нередко служит хром. Так как никелированные вещи со временем теряют первоначальный блеск, то сочетание никель-хром позволяет получить не только более устойчивую к агрессивным воздействиям окружающей среды, но и внешне привлекательную вещь.
В отличие от электролитического, химический метод обеспечивает равномерность толщины и качества покрытия на любых участках смесителя при условии доступа к ним раствора. Применение этого способа позволяет обрабатывать полости, зазоры, глубокие и узкие отверстия и прочие проблемные части изделий.
Никелирование относится к катодному типу защиты изделия. Это означает, что металлическая поверхность предмета начинает реагировать с окружающей средой при любом повреждении целостности покрытия. Для улучшения защитных характеристик процесс никелирования должен проходить при соблюдении технологии и правильной последовательности действий. Если никель нанести на плохо подготовленную поверхность, с ржавчиной или грязью, то такое покрытие долго не продержится, начнёт отслаиваться и сыпаться.
Физико-химические характеристики
Никель устойчив к окислению. Это свойство обеспечивает тонкая поверхностная пленка оксида NiO, появляющаяся при обычных температурах.
Свойства атома | |
Название, символ, номер | Ни́кель / Niccolum (Ni), 28 |
Атомная масса (молярная масса) | 58,6934(4) а. е. м. (г/моль) |
Электронная конфигурация | 3d8 4s2 |
Радиус атома | 124 пм |
Химические свойства | |
Ковалентный радиус | 115 пм |
Радиус иона | (+2e) 69 пм |
Электроотрицательность | 1,91 (шкала Полинга) |
Электродный потенциал | -0,25 В |
Степени окисления | 0, +2, +3 |
Энергия ионизации (первый электрон) | 736,2 (7,63) кДж/моль (эВ) |
Термодинамические свойства простого вещества | |
Плотность (при н. у.) | 8,902 г/см³ |
Температура плавления | 1726 K (1453 °C, 2647 °F) |
Температура кипения | 3005 K (2732 °C, 4949 °F) |
Уд. теплота плавления | 17,61 кДж/моль |
Уд. теплота испарения | 378,6 кДж/моль |
Молярная теплоёмкость | 26,1 Дж/(K·моль) |
Молярный объём | 6,6 см³/моль |
Кристаллическая решётка простого вещества | |
Структура решётки | кубическая гранецентрированая |
Параметры решётки | 3,524 Å |
Температура Дебая | 375 K |
Прочие характеристики | |
Теплопроводность | (300 K) 90,9 Вт/(м·К) |
Номер CAS | 7440-02-0 |
Центрированная по граням структура обуславливает стойкость к нагрузкам, а особенности строения электронных оболочек атомов – свойство намагничивания.
Свойства цинковых сплавов
Чтобы понимать какими свойствами должны обладать цинковые сплавы, необходимо знать характеристики цинка. Литейные качества, температура плавления, твердость и другие параметры напрямую зависят от химических и физических свойств цинка. Он представляет собой голубоватый металл. Это вещество не встречается в природных месторождениях в чистом виде. В процессе длительной обработки получается оксид цинка, из которого можно получить чистый металл.
Характеристики и свойства цинка
Перед описанием цинковых сплавов и их применения в различных направлениях производства требуется разобраться со свойствами цинка.
Химические свойства:
- При длительном нагревании может вступать в реакции с Н2О и сероводородом. В ее процессе выделяется водород.
- Не вступает в контакт с углеродом и азотом.
- Смешивается с различными неметаллами — кислородом, фосфором и серой.
- При соединении с щелочами, образуются цинкаты (это соли цинковой кислоты).
- Если смешивать металл с серной кислотой, могут образовываться различные вещества. Все зависит от количества кислоты.
- При очень высокой температуре металл может контактировать с различными газами (йод в газообразном состоянии, хлор и фтор).
Физические свойства:
- Представляет собой прочный металл. При нагревании до 100–150°С он становится пластичным. При разогревании более 210 °С металл изменяет свою форму. В сравнении с другими металлами цинк плавится при низкой температуре.
- Обладает хорошей теплопроводностью — 116 Вт/м К.
- Кипение материала при температуре — 906°С.
- Плотность — 7.133 гр./см куб.
- Плавление материала — 419°С.
- Максимальная прочность при растяжении — 200–250 МН/м2.
- Удельная теплота испарения — 114.8 КДж/моль.
Количество примесей в составе металла напрямую зависит от способа добычи, обработки и изначальной породы материала. Часто встречающиеся примеси, содержащиеся в цинке — никель, фтор, хлор и свинец.
Необработанный металл
Как примеси изменяют свойства цинка
Посторонние примеси, содержащиеся в цинке, ухудшают характеристики этого металла (при большом содержании). Первостепенная задача производителей — снизить количество свинца, кадмия и олова в этом металле, чтобы избежать межкристаллической коррозии.
Воздействие примесей на цинк:
- Свинец — усиливает растворимость металла в воде.
- Медь — ухудшает показатель пластичности. Металл становится более уязвимым для коррозии, однако улучшается его прочность.
- Мышьяк — ухудшает прочность и пластичность цинка даже при минимальном содержании.
- Олово — увеличивает ломкость готовых отливок.
- Кадмий — снижает пластичность металла.
- Сурьма — в процессе прокатки при больших температурах, увеличивает прочность и ухудшает пластичность цинка.
Практически все примеси считаются вредными для готовых заготовок. Из-за этого производители в первую очередь проводят ряд процедур, чтобы содержание цинка в готовой отливке было наиболее высоким.
Применение никеля и источники загрязнения окружающей среды
Простейшим примером является никелирование металлических деталей, сантехники. Этот металл входит во многие стали и сплавы, применяется в химической промышленности как катализатор, но одним из наиболее важных сфер применения металла является гальваническая техника и химическое машиностроение. На фото ниже – электролизный цех.
На заводе по производству никеля
В аэрокосмической промышленности широко применяются жаропрочные материалы на основе никеля, металлургия использует такие хромоникелевые стали и сплавы, как константан, нейзильбер, нихром, пермаллой, инвар и другие. Каждый из них обладает своими уникальными свойствами. Это вещество широко применяется в производстве самых разных источников постоянного тока: в аккумуляторной промышленности. Даже для производства струн щипковых инструментов, а точнее, для их обмотки требуются сталь с повышенным содержанием никеля.
Никелированная посуда
В быту нас окружает никелированная посуда (никелирование, которое проводится гальваническим методом и предохраняет материалы от коррозии), он применяется для покрытия ножей, ложек и вилок, используется в производстве зубных протезов и коронок.
Никель способен загрязнять воду, особенно в сточной зоне химических производств, заводов по производству каучука и горно-обогатительных комбинатов. Практически 97% выброса металла в атмосферу приходится на предприятия отечественного концерна «Норильский никель» в таких населенных пунктах, как Норильск, Мончегорск, Апатиты. Он попадает в воздух как отход при сжигании различных сортов каменного угля.
Формы нахождения металла
Никелевый сплав создается для замещения железа или магния. В виде самородков металл присутствует в метеоритах, в естественных условиях извлекается из руды. Концентрация этого вещества в живых организмах обуславливается воздействием окружающей среды.
Главные месторождения расположены в таких странах:
- Китай.
- Россия.
- Албания.
- Куба.
- Греция.
Разновидность руды определяет технологию извлечения никеля. Гидрометаллургический способ используется для переработки латеритового сырья. Если руда содержит меньше целевого материала, проводится электрическая выплавка или обжиг. Такой процесс позволяет одновременно добывать соли кобальта. Много никеля содержится в продуктах горения каменного угля, добываемого в Англии. Это обусловлено существованием микроорганизмов, в которых содержится минерал. Чистота добытого вещества определяет его физические характеристики.
Легирование с помощью магния помогает получить чистый металл.
Специфика, определение и назначение никелирования
Защитное никелевое покрытие может наноситься практически на все виды металлов и их сплавов, а также на стекло, пластмассу и керамику. Но чаще всего никелирование используют для защитно-декоративной обработки изделий из стали, меди, цинка, алюминия и их сплавов. В домашних условиях изделия чаще всего покрывают одним никелевым слоем, а в промышленном производстве никель обычно входит в состав многослойных покрытий. Это связано с его пористостью, которая полностью исчезает только при толщине слоя более 30 микрон. По этой причине никель чаще всего накладывают на подслой меди, а снаружи защищают слоями хрома или кадмия.
Никелирование деталей с предварительным омеднением несложно осуществить даже в домашней мастерской, а вот использование хрома и кадмия требует особых условий и мер предосторожности в связи с высокой токсичностью соединений этих металлов. При промышленном и домашнем никелировании с помощью электролитных добавок и различных режимов электролиза можно получить следующие виды поверхностей:
- блестящие;
- матовые;
- полублестящие;
- двух- и трехслойные;
- композиционные;
- черные;
- велюровые;
- износостойкие.
На рисунке ниже изделия с матовым и черным никелевыми покрытиями.
«Черный» никель применяют в оптических приборах и при создании военной техники. В его состав входит до трех четвертей неметаллических компонентов — сульфидов никеля и гидроксидов цинка. Нанести такие покрытия в домашних условиях очень сложно, т. к. для этого требуются профессиональные знания и специальные реагенты.
Научная точка зрения
Чтобы определить, какие металлы не магнитятся, нужно выяснить, как все металлы вообще могут относиться к магнитам и магнитному полю. По отношению к внесенному магнитному полю все вещества делят на диамагнетики, парамагнетики и ферромагнетики.
Каждый атом состоит из положительно заряженного ядра и отрицательно заряженных электронов. Они непрерывно движутся, что создает магнитное поле. Магнитные поля электронов одного атома могут усиливать друг друга или уничтожать, что зависит от направления их движения. Причем скомпенсированы могут быть:
- Магнитные моменты, вызванные движением электронов относительно ядра – орбитальные.
- Магнитные моменты, вызванные вращением электронов вокруг своей оси — спиновые.
Если все магнитные моменты равны нулю, вещество относят к диамагнетикам. Если скомпенсированы только спиновые моменты — к парамагнетикам. Если поля не скомпенсированы – к ферромагнетикам.
Классификация
По химическому составу нержавеющие стали делятся на:
- Хромистые, которые, в свою очередь, по структуре делятся на; Мартенситные;
- Полуферритные (мартенисто-ферритные);
- Ферритные;
Хромоникелевые;
- Аустенитные
Аустенитно-ферритные
Аустенитно-мартенситные
Аустенитно-карбидные
Хромомарганцевоникелевые (классификация совпадает с хромоникелевыми нержавеющими сталями).
Различают аустенитные нержавеющие стали, склонные к межкристаллитной коррозии
, истабилизированные — с добавками и . Значительное уменьшение склонности нержавеющей стали к межкристаллитной коррозии достигается снижением содержания углерода (до 0,03 %).
Нержавеющие стали, склонные к межкристаллитной коррозии, после сварки, как правило, подвергаются термической обработке.
Широкое распространение получили сплавы железа и никеля, в которых за счёт никеля аустенитная структура железа стабилизируется, а сплав превращается в слабо-магнитный материал.
Мартенситные и мартенсито-ферритные стали
Мартенситные и мартенситно-ферритные стали обладают хорошей коррозионной стойкостью в атмосферных условиях, в слабоагрессивных средах (в слабых растворах солей, кислот) и имеют высокие механические свойства. В основном их используют для изделий, работающих на износ, в качестве режущего инструмента, в частности, ножей, для упругих элементов и конструкций в пищевой и химической промышленности, находящихся в контакте со слабоагрессивными средами. К этому виду относятся стали типа 30Х13, 40Х13 и т. д.
Ферритные стали
Эти стали применяют для изготовления изделий, работающих в окислительных средах (например, в растворах азотной кислоты), для бытовых приборов, в пищевой, легкой промышленности и для теплообменного оборудования в энергомашиностроении. Ферритные хромистые стали имеют высокую коррозионную стойкость в азотной кислоте, водных растворах аммиака, в аммиачной селитре, смеси азотной, фосфорной и фтористоводородной кислот, а также в других агрессивных средах. К этому виду относятся стали 400 серии.
Аустенитные стали
Основным преимуществом сталей аустенитного класса являются их высокие служебные характеристики (прочность, пластичность, коррозионная стойкость в большинстве рабочих сред) и хорошая технологичность . Поэтому аустенитные коррозионностойкие стали нашли широкое применение в качестве конструкционного материала в различных отраслях машиностроения. Теоретически изделия из аустенитных нержавеющих сталей при нормальных условиях — немагнитные, но после холодного деформирования (любой мехобработки) могут проявлять некоторые магнитные свойства (часть аустенита превращается в феррит).
Аустенито-ферритные и аустенито-мартенситные стали
Аустенито-ферритные стали. Преимущество сталей этой группы — повышенный предел текучести по сравнению с аустенитными однофазными сталями, отсутствие склонности к росту зёрен при сохранении двухфазной структуры, меньшее содержание остродефицитного никеля и хорошая свариваемость. Аустенито-ферритные стали находят широкое применение в различных отраслях современной техники, особенно в химическом машиностроении, судостроении, авиации. К этому виду относятся, стали типа 08Х22Н6Т, 08Х21Н6М2Т, 08Х18Г8Н2Т.
Аустенито-мартенситные стали. Потребности новых отраслей современной техники в коррозионностойких сталях повышенной прочности и технологичности привели к разработке сталей мартенситного (переходного) класса. Это стали типа 07Х16Н6, 09Х15Н9Ю, 08Х17Н5М3.
Сплавы на железоникелевой и никелевой основе.
При изготовлении химической аппаратуры, особенно для работы в серной и соляной кислотах, необходимо применять сплавы с более высокой коррозионной стойкостью, чем аустенитные стали. Для этих целей используют сплавы на железноникелевой основе типа 04ХН40МТДТЮ и сплавы на никельмолибденовой основе Н70МФ, на хромоникелевой основе ХН58В и хромоникельмолибденовой основе ХН65МВ, ХН60МБ.
Неотложная помощь
Любая неотложная помощь сводится к полному устранению контакта отравившегося или с металлическим никелем, или с его парами, или с растворимыми соединениями. В случае отравления карбонилом никеля дополнительно нужно полностью снять всю одежду и механически, с помощью мыла и воды удалить его с кожных покровов. При отравлении карбонилом дают кислород, вводят симптоматические препараты, глюкокортикоидные гормоны, бронхолитики, или даже переводят на ИВЛ.
В последнее время используется при тяжелых отравлениях диэтилдитиокарбамат натрия, применяются такие средства, как дисульфирам. В случае контактного дерматита используются обычные методы лечения, связанные с применением антиаллергических препаратов, местных глюкокортикоидных гормонов. Самое главное, как лечить аллергию на никель – это первым делом избавиться от контакта с металлическими предметами.
6 Особенности сталей на основе никеля и системы железо-никель
Указанные сплавы, жаростойкость и жаропрочность которых очень высока, имеют в своем составе свыше 55 % никеля и более 65 % комплекса никель + железо. Базовым элементом в обоих видах композиций при этом является хром (его содержится от 14 до 23 %).
Более высокие показатели стойкости и прочности при повышенных температурах демонстрируют стали на основе никеля: ХН60В, ХН75МБТЮ, ХН60Ю, ХН78Т (жаропрочные) и ХН77ТЮ, ХН70МВТЮБ, ХН70ВМЮ, ХН70, ХН67ВМТЮ (жаростойкие). Обусловлен сей факт процессом формирования на их поверхности при высоких температурах оксидной алюминиевой и хромовой пленки, а также (в твердых растворах) – соединений алюминия и никеля, титана и никеля.
В никелевых сплавах из-за несущественного содержания в них углерода никогда не появляются карбиды. А их упрочнение – это последствие твердения, характеризуемого дисперсной природой, после выполнения термообработки. Под такой обработкой понимают:
- создание твердой однородной композиции никеля и легирующих добавок;
- следующее за этим старение металла (температура процесса – около 750 градусов, иногда — 800).
В процессе распада твердого пересыщенного состава формируются металлические упрочняющие компоненты, которые существенно увеличивают показатель жаропрочности стали и ее сопротивляемость деформациям.
Назначение и марки сталей с никелем, с никелем и железом:
- составляющие газовых конструкций – ХН35ВМТЮ;
- элементы турбин – ХН35ВТР;
- диски и лопатки компрессоров – ХН35ВТЮ;
- роторы турбин – ХН35ВТ, ХН35ВМТ.
Никелирование алюминия
Начинают с двукратной цинковой обработки материала. Цель такой обработки — сделать материал плотным и прочным, чтобы частички никеля смогли равномерно покрыть поверхность металла. Цинковая обработка выполняется так:
- Растворите в 1 литре воды 250 г едкого натра, добавьте 50-60 г окиси цинка. Оптимальная температура раствора — 18-20 градусов по Цельсию.
- Поместите обрабатываемую деталь из алюминия в раствор на 3-5 секунд в раствор, а потом сразу же достаньте ее из раствора, чтобы избежать химического повреждения. Раствор не выливайте!
- Выполните травление детали в течение 10-15 секунд, чтобы равномерно распределить цинк по всей поверхности детали. Для травления используется азотная кислота в концентрации 15%.
- Повторно выполните цинковую обработку в растворе в течение 3-5 секунд, потом промойте деталь в горячей воде. Повторное травление в азотной кислоте выполнять не нужно.
Растворы
Для никелирования можно использовать различные растворы, рассмотрим несколько основных рецептов:
- Рецепт #1. Хлористый натрий — 20 г, лимоннокислый натрий — 40 г, аммоний на основе хлора — 50 г, 25%-аммиак — 50 мл, гипофосфит натрия — 25 г, вода — 1 литр. Для приготовления раствора необходимо нагреть воду до температуры 80-90 градусов. После этого в воду помещаются все компоненты (кроме гипофосфита). Выполняется перемешивание соединения до образования однородного раствора, в конце вносится гипофосфит натрия.
- Рецепт #2. Уксуснокислый никель — 25 г, аминоуксусная кислота — 20 г, гипофосфит натрия — 30 г, вода — 1 литр. Для приготовления раствора вода доводится до температуры 95 градусов. После этого в добавляются все компоненты (кроме гипофосфита). Производится размешивание раствора до полного растворения компонентов, в конце вносится гипофосфит натрия.
Для проведения никелирования хромированные алюминиевые детали помещаются в один из растворов. Деталь подвешиваются на проволоке, а потом она опускается в раствор на 70-80%. Она не должна касаться боковых стен и дна. После этого температура повышается до 350-380 градусов. Оптимальный срок термическо-химической обработки — 1 час.
Для ускорения никелирования можно повысить температуру раствора до 500 градусов. Однако в таком случае на поверхности детали могут образоваться желто-рыжие или фиолетовые пятна, от которых будет сложно избавиться, поэтому избыточный нагрев лучше не производить. После никелирования алюминий проходит вспомогательную обработку в машинном масле:
- На огонь ставится минеральное масло, которое разогревается до температуры 250 градусов.
- Деталь достается из электролитного раствора и сразу же помещается в минеральное масло.
- В масле деталь греется в течение 1 часа. После этого деталь достается, промывается под теплой водой + выполняется обезжиривание.
Латунь
Самыми распространёнными смесителями являются латунные. Данный материал используется как для изготовления корпусов смесителей, так и для их покрытия. Латунь представляет собой сплав цинка с медью. Зачастую, в изделиях содержится около 60% меди. В незначительных количествах могут присутствовать цинк, никель, железо, олово, алюминий, марганец, а также свинец. Такая продукция неопасна для здоровья человека и наиболее устойчива к различным воздействиям окружающей среды. В среднем, латунные смесители служат 5-7 лет.
Нередко производители нарушает технологию процесса, меняя состав продукта. Например, для увеличения жидкотекучести получаемого сплава, в латунь добавляют свинец. Это облегчает процесс изготовления в плохо оборудованных условиях. Норма содержания свинца в сплаве — не более 2,5%. Уже при 3% появляются микротрещины и смеситель при эксплуатации может в любой момент дать течь. Более того, пользоваться таким смесителем просто опасно, так как вода из-под такого смесителя содержит свинец. При длительном употреблении такая вода может спровоцировать отравление, иногда онкологические заболевания.
Также, плохо на качество продукции влияет слишком большое количество цинка в латуни. Добавляя данный металл в состав сплава, производитель снижает температуру литья и стоимость производства конечного продукта. Но полученные таким образом изделия плохо устойчивы к веществам, присутствующим в обычной водопроводной воде. Опознать подделку легко: на металле образуется белый налёт, что не свойственно латуни.
Цинк имеет меньшую температуру плавления, чем медь. Поэтому, во время плавки он выгорает, и в готовом продукте получаются характерные дефекты — маленькие царапины. Они редко заполировываются до конца, а тонкий слой хрома или никеля не способен их скрыть.
Есть ещё один способ продать некачественный товар под видом хорошего. Чтобы скрыть манипуляции с неправильным составом сплава или некачественными литьевыми формами, производитель обрабатывает проблемные детали лаком. Лаковое покрытие на время скрывает дефектную пористость поверхности, маленькие трещины. Первое время смеситель работает как положено.
Существует миф, что недорогие смесители делают из силумина (сплава кремния с алюминием). Действительно, из него изготавливают детали для различной мелкой бытовой техники, активно применяют в мото- и авиастроении. Но китайские силуминовые смесители являются городской легендой. Поэтому любые сравнения латунного и силуминового или медного и силуминового смесителей в магазине сантехники являются некорректными по той причине, что состав такого «силумина» неизвестен.
Физические свойства никеля:
400 | Физические свойства | |
401 | Плотность* | 8,908 г/см3 (при 20 °C и иных стандартных условиях, состояние вещества – твердое тело), 7,81 г/см3 (при температуре плавления 1455 °C и иных стандартных условиях, состояние вещества – жидкость) |
402 | Температура плавления* | 1455 °C (1728 K, 2651 °F) |
403 | Температура кипения* | 2730 °C (3003 K, 4946 °F) |
404 | Температура сублимации | |
405 | Температура разложения | |
406 | Температура самовоспламенения смеси газа с воздухом | |
407 | Удельная теплота плавления (энтальпия плавления ΔHпл)* | 17,48 кДж/моль |
408 | Удельная теплота испарения (энтальпия кипения ΔHкип)* | 379 кДж/моль |
409 | Удельная теплоемкость при постоянном давлении | 0,439 Дж/г·K (при 20°C) |
410 | Молярная теплоёмкость* | 26,07 Дж/(K·моль) |
411 | Молярный объём | 6,6 см³/моль |
412 | Теплопроводность | 90,9 Вт/(м·К) (при стандартных условиях), 90,9 Вт/(м·К) (при 300 K) |
413 | Коэффициент теплового расширения | 13,4 мкм/(М·К) (при 25 °С) |
414 | Коэффициент температуропроводности | |
415 | Критическая температура | |
416 | Критическое давление | |
417 | Критическая плотность | |
418 | Тройная точка | |
419 | Давление паров (мм.рт.ст.) | |
420 | Давление паров (Па) | |
421 | Стандартная энтальпия образования ΔH | |
422 | Стандартная энергия Гиббса образования ΔG | |
423 | Стандартная энтропия вещества S | |
424 | Стандартная мольная теплоемкость Cp | |
425 | Энтальпия диссоциации ΔHдисс | |
426 | Диэлектрическая проницаемость | |
427 | Магнитный тип | |
428 | Точка Кюри* | |
429 | Объемная магнитная восприимчивость | |
430 | Удельная магнитная восприимчивость | |
431 | Молярная магнитная восприимчивость | |
432 | Электрический тип | |
433 | Электропроводность в твердой фазе | |
434 | Удельное электрическое сопротивление | |
435 | Сверхпроводимость при температуре | |
436 | Критическое магнитное поле разрушения сверхпроводимости | |
437 | Запрещенная зона | |
438 | Концентрация носителей заряда | |
439 | Твёрдость по Моосу | |
440 | Твёрдость по Бринеллю | |
441 | Твёрдость по Виккерсу | |
442 | Скорость звука | |
443 | Поверхностное натяжение | |
444 | Динамическая вязкость газов и жидкостей | |
445 | Взрывоопасные концентрации смеси газа с воздухом, % объёмных | |
446 | Взрывоопасные концентрации смеси газа с кислородом, % объёмных | |
446 | Предел прочности на растяжение | |
447 | Предел текучести | |
448 | Предел удлинения | |
449 | Модуль Юнга | |
450 | Модуль сдвига | |
451 | Объемный модуль упругости | |
452 | Коэффициент Пуассона | |
453 | Коэффициент преломления |
Свойства никеля
Плотность и масса
Никель относится к ряду тяжелых металлов. Его плотность в два раза больше, чем у металла титан, но равна по числовому значению плотности меди.
Численное значение удельной плотности никеля составляет 8902 кг/м3. Атомная масса никеля: 58,6934 а. е. м. (г/моль).
Механические характеристики
Никель обладает хорошей ковкостью и тягучестью. Благодаря этим характеристикам он легко подвергается прокату. Из него довольно просто получить тонкие листы и небольшие трубы.
При температуре от 0 до 631 К никель становится ферромагнитным. Происходит этот процесс благодаря особенному строению внешних оболочек атома никеля.
Известны следующие механические характеристики никеля:
- Повышенная прочность.
- Предел прочности равный 450 МПа.
- Высокопластичность материала.
- Коррозионная стойкость.
- Высокая температура плавления.
- Высокая каталитическая способность.
Механические характеристики описываемого металла зависят от наличия примесей. Самыми опасными и вредными считается сера, свинец, висмут, цинк и сурьма. Если никель насытить газами, то его механические свойства станут хуже.
Тепло- и электропроводность
- Металл никель имеет следующую теплопроводность: 90,1 Вт/(м·К) (при температуре 25°C).
- Электропроводность никеля равна 11 500 000 Сим/м.
Коррозионная стойкость
Под коррозионной стойкостью понимается способность металла при воздействии на него агрессивной среды противостоять разрушению. Никель относиться к материалам с высокой стойкостью к коррозии.
Никель не покрывается ржавчиной в нижеперечисленных средах:
- Окружающая атмосфера. Никель обладает хорошей устойчивостью к высоким температурам. Если никель находится в условиях промышленной атмосферы, то он всегда покрывается тонкой пленкой, которая приводит к потускнению никеля.
- Щелочи в горячем и холодном виде, а так же их расплавленные состояния.
- Органические кислоты.
- Неорганические кислоты.
Кроме этого, ржавчиной никель не покрывается в горячих спиртах и жирных кислотах. Благодаря этому этот металл широко используют в пищевой промышленности.
Химическая промышленность то же широко использует никель. Это происходит благодаря коррозионной стойкости никеля к воздействию высокой температуры и большой концентрации растворов.
Повышенной коррозионной стойкостью обладают сплавы из никеля. Особенно соединения этого металла с железом, молибденом, хромом и медью.
Никель подвержен коррозии при следующих окружающих его условиях:
- Морская вода.
- Щелочные растворы гипохлоритов.
- Сера или любая среда, содержащая серу.
- Растворы окислительных солей.
- Гидрат аммиака и аммиачная вода.
Токсичность никеля рассмотрена ниже.
Температуры
Известны следующие термодинамические свойства никеля:
- Температура плавления никеля: 1726 K или 2647 °F или 1453 °C.
- Температура кипения никеля: 3005 K или 4949 °F или 2732 °C.
- Температура литья: 1500-1575 °C.
- Температура отжига: 750 — 900 °C.
Токсичность и экологичность
В больших количествах никель оказывает токсичное действие на организм. Если речь идет о приеме его с пищей, то повышенное содержание этого элемента обязательно вызовет угрозу для здоровья.
Часто встречающие негативное последствие от переизбытка никеля – это аллергия. Так же при воздействии этого металла (в больших количествах) на организм возникают расстройства желудка и кишечника, обязательно повышается содержание эритроцитов. Никель может вызвать хронический бронхит, почечный стресс и нарушение работы легких. Переизбыток никеля провоцирует рак легкого.
Если вода для питья содержит 250 частиц никеля на миллион частиц воды, то такое содержание может вызвать болезнь крови и проблемы с почками. Однако это довольно редко явление.
Никель содержится в табачном дыме. Вдыхание этого дыма или пыли с содержанием никеля приводит к бронхиту и нарушению функционирования легких. Получить это вещество возможно в условиях вредного производства или в неблагоприятных экологически районах.
Токсичность никеля представляет собой опасность только в случае попадания в организм человека в больших количествах. Если никель используется в промышленности и в строительных делах, то он не опасен.
Другие характеристики
Еще никель имеет следующие характеристики:
- Удельное электрическое сопротивление никеля равное 68,8 ном·м.
- В химическом плане никель схож с железом, кобальтом, купрумом и некоторыми благородными металлами.
- Никель взаимодействует с кислородом при температуре в 500 С.
- Если никель переходит в мелкодисперсное состояние, то он может самовоспламениться.
- Никель не реагирует с азотом даже при условии очень высокой температуры.
- Никель медленнее чем железо растворяется в кислотах.
Что делают из чёрного металла
Граница, разделяющая чёрные и цветные металлы, не всегда выглядит чёткой и однозначной. Поэтому на обыденном уровне к чёрным металлам относят углеродистые и низколегированные марки стали, а также нелегированный чугун. Мы можем назвать следующие примеры чёрных металлов, а точнее – продукции из них:
- строительную арматуру всех классов;
- листовой, сортовой и фасонный прокат из перечисленных марок стали, в том числе с оцинкованным покрытием;
- трубы;
- стальное и чугунное литьё общего назначения – например, корпуса трубопроводной арматуры.
Детализированный перечень продукции из чёрных металлов можно продолжать почти до бесконечности. Однако не забывайте: не всё, что ржавеет, является чёрным металлом.